Fakultät 03 – Maschinenbau

Technischer Bericht

Projektarbeit

Shakerregelung

Ort: B0073

Bearbeiter: Schauerhammer Lars (04744912) __________________
 Schürmann Sebastian (02102412) __________________
 Wiegele Markus (03560412) __________________

Betreuer: Dipl.-Ing. Armin Rohnen LbA
I Inhaltsverzeichnis

I Inhaltsverzeichnis .. 2

II Abbildungsverzeichnis ... 3

1 Einleitung ... 4

2 Durchführung der Projektarbeit ... 4

3 Aufbau des Prüfstandes .. 5

3.1 Hardware .. 5

3.1.1 Shakeraufbau .. 5

3.1.2 Sensoren ... 6

3.1.3 NI – Komponenten .. 8

3.1.4 Vorrichtung ... 8

3.1.5 Kabel ... 9

3.2 Software ... 11

3.2.1 Aufbau des Regelprogramms ... 11

3.2.2 Wichtige Komponenten des Regelprogramms ... 12

3.2.3 Programmablauf ... 16

4 Verbesserungsmöglichkeiten ... 19

4.1 Verbesserungen Hardware ... 19

4.2 Verbesserungen Software .. 19

5 Fazit .. 21

6 Anhang ... 22

I Quick Guide ... 23

II Shakeraufbau .. 24

III Sensoren .. 49

IV NI-Komponenten .. 60

V Strukturgramme des Programms .. 92

VI CAD - Zeichnungen ... 98
II Abbildungsverzeichnis

Abbildung 3.1: Skizzieter Aufbau des Prüfstandes ... 5
Abbildung 3.2: Pinbelegung der Verkabelung am Anschlussblock ... 8
Abbildung 3.3: Vorrichtung für Sensorbefestigung ... 9
Abbildung 3.4: Signalkabel ... 10
Abbildung 3.5: Signalfluss des Prüfstandaufbaus ... 10
Abbildung 3.6: User Interface des Regelprogramms ... 11
Abbildung 3.7: Eingabe der Vorgabewerte .. 12
Abbildung 3.8: Ausgabe der TIRA-Versärker-Werte ... 13
Abbildung 3.9: Ausgabe der aktuellen Messdaten und Einstellung der Messung 13
Abbildung 3.10: Ausgabe der aktuellen Sensorsignale .. 14
Abbildung 3.11: Fixe und externe Ausgänge ... 14
Abbildung 3.12: Ausgänge ... 15
1 Einleitung

2 Durchführung der Projektarbeit

- Vorrichtung für die Befestigung der Sensoren am Shaker konstruieren (CATIA) und fertigen lassen (Anhang VI)
- Signalkabel erstellen (BNC) für die Verbindung der Verstärker mit der Connector Box
- Verkabelung der Komponenten miteinander (richtige Kabel bestellen)
- Aufbau und Funktion des Regelprogramms mit Struktogramm bildlich darstellen (Anhang V)
- Grundstruktur des Regelungsprogramm mit Hilfe des Struktogramms in LabVIEW programmieren
- Optimierung des Programms
- kleinere Aufgaben erledigen (z.B. Recherche im Internet, Planen des Aufbaus)
- Dokumentation der Projektarbeit
3 Aufbau des Prüfstandes

In Abbildung 3.1 ist der gesamte Prüfstandsaufbau vereinfacht in einer Skizze dargestellt. Dieser wird in den nachfolgenden Kapiteln in deren einzelnen Komponenten näher beschrieben.

Abbildung 3.1: Skizziertes Aufbau des Prüfstandes

3.1 Hardware

Zuerst werden die Funktionen aller wichtigen Hardwarekomponenten kurz erläutert. Zur einfachen Beschreibung wird die Nummerierung in Abbildung 3.1 nachfolgend verwendet.

3.1.1 Shakeraufbau

3.1.2 Sensoren

Kraftsensor

Der verwendete Kraftsensor (8) (PCB 208C02) funktioniert nach dem Prinzip des piezoelektrischen Effekts und misst die anliegende Kraft. Dieser dient zur Einregelung des Shakers auf eine vom Anwender vorgegebene Kraft. Die Sensitivität des Sensors ist 11241 mV/kN.

Beschleunigungssensor

Der Beschleunigungssensor von Brüel & Kjær Typ 4370 (7) dient zur Einregelung des Shakers auf eine vorgegebene Beschleunigung oder einem Weg. Er hat eine Sensitivität von 10,09 pC/(m/s²). Das ausgegebene hochimpedante und störempfindliche Ladungssignal vom Beschleunigungssensor wird über einen Ladungsvorverstärker (auch Impedanzwandler) (9) (IEPE 100) in ein Spannungssignal mit niedriger Impedanz umgewandelt. Der Signalweg vom Sensor zum Ladungsvorverstärker sollte so kurz wie möglich sein, um einen möglichst geringen Messfehler zu erreichen.

Zusätzlich werden beide Signale, sowohl vom Kraftsensor als auch vom Beschleunigungssensor, mit den Verstärkungsmodulen M32 (10) um den Faktor 1, 10 oder 100 verstärkt, da das Signal direkt vom Sensor für eine optimale Regelung zu schwach und störanfällig ist. Alle technischen Daten der Sensoren sowie der Verstärker sind im Anhang II einzusehen.

Zum besseren Verständnis der Signalumrechnung der Sensoren im Programm wird diese anhand eines Beispiels erklärt.

Kraftsensor

Parameter:
- Umrechnungsfaktor \(UF_F = 11,241 \frac{mV}{N} \)
- Verstärkungsfaktor \(VF = [1, 10, 100] \)
 des Verstärkers M32
- max. erlaubte Kraft \(F_{max} = 400 \, N \)

Bei der Umrechnung im Programm wird ein Faktor benötigt, der die ausgebende Spannung \(U_{Sensor} \) des Sensors von Volt in Millivolt umrechnet.
→ Programmfaktor $PF = 0,001 \frac{V}{mV}$

Der IST-Wert der Kraft muss mit Hilfe der oben genannten Faktoren umgerechnet werden, sodass der Ausgabewert im User Interface der Einheit Newton entspricht. Dieser wird wie folgt berechnet:

$$F_{Auszgabe} = \frac{U_{Sensor}}{PF \cdot UF \cdot VF} \left[\frac{V}{mV} \right] = F_{Auszgabe} [N]$$ \hspace{0.5cm} (3.1)

Beschleunigungssensor

Parameter:
- Umrechnungsfaktor $UF_a = 10,09 \frac{pc}{m/s^2}$
- Verstärkungsfaktor $VF = [1, 10, 100]$ des Verstärkers M32
- max. erlaubte Beschl. $a_{max} = 100 \cdot g \frac{m}{s^2}$

Aus den oben genannten Gründen wird direkt nach dem Beschleunigungssensor ein Impedanzwandler mit Verstärkung angebracht, der folgenden Umrechnungsfaktor hat:

$$LVF = [0,1, 1,10] \frac{mV}{pc}$$

Bei der Umrechnung im Programm wird noch ein Faktor benötigt, der die ausgebende Spannung U_{Sensor} des Sensors von Volt in Millivolt umrechnet.

- Programmfaktor $PF = 0,001 \frac{V}{mV}$

Der IST-Wert der Beschleunigung muss mit Hilfe der oben genannten Faktoren berechnet werden, sodass der Ausgabewert im User Interface der Einheit $\frac{m}{s^2}$ entspricht. Dieser wird wie folgt berechnet:

$$a_{Auszgabe} = \frac{U_{Sensor}}{PF \cdot UF_a \cdot LVF \cdot VF} \left[\frac{V}{pc \cdot mV^2} \right] = a_{Auszgabe} \left[\frac{m}{s^2} \right]$$ \hspace{0.5cm} (3.2)
3.1.3 NI-Komponenten

Als Verteilung und Verbindung der einzelnen Signalkabel dient der Anschlussblock (4) (SCB-68A). In Abbildung 3.2 ist die Pinbelegung der Verkabelung dargestellt.

![Abbildung 3.2: Pinbelegung der Verkabelung am Anschlussblock](image)

Die Signale der Sensoren werden über den Anschlussblock und das Datenerfassungsmodul (3) (NI PXIe-6358) im Chassi (2) (NI PXIe-1073) an den Rechner (1) geleitet und somit an das Regelungsprogramm. Aus diesen Signalen wird dann im Regelungsprogramm (siehe Kapitel 3.2) die für den Ausgangsverstärker (TIRA) benötigte Spannung und Stromstärke bestimmt und über die gleiche Kette zum Shaker geleitet. Dadurch wird der Schwingungserreger auf die Vorgabewerte des Bedieners eingeregelt. Die technischen Daten des Anschlussblocks, des Datenerfassungsmoduls und des Chassises sind im Anhang III zu finden.

3.1.4 Vorrichtung

Zur festen und spielfreien Installation vom Shaker zum zu testenden Objekt, wurde eine Vorrichtung konstruiert und gefertigt. Diese ist zusammen mit den beiden Sensoren in Abbildung 3.3 zu sehen. Das Ausgleichsgewicht stellt sicher, dass die Schwingung des Shakers nicht

Abbildung 3.3: Vorrichtung für Sensorbefestigung

Die CAD-Zeichnungen zu der Vorrichtung sind im Anhang VI enthalten.

3.1.5 Kabel

Abbildung 3.4: Signalkabel

Zum besseren Verständnis ist in Abbildung 3.5 der Signalfluss des kompletten Aufbaus vereinfacht dargestellt.

Abbildung 3.5: Signalfluss des Prüfstandaufbaus

Im Regelungsprogramm auf dem Rechner (1) werden die Vorgabewerte vom Bediener eingegeben (nähere Beschreibung des Programms in Kapitel 3.2). Von dort gehen diese über die NI-Komponenten (2-4) an den TIRA Verstärker (5), der den TIRA Shaker (6) zum Schwingen anregt. In den darauf befestigten Sensoren (7, 8) entstehen Signale, die über die Verstärker (9, 10) und die NI-Komponenten wieder zum Rechner in das Regelungsprogramm geleitet werden. Dadurch ist der Regelkreis geschlossen.
3.2 Software

3.2.1 Aufbau des Regelprogramms

Dass der Bediener schnell und effektiv arbeiten kann, ist eine benutzerfreundliche Oberfläche des Programms ein wichtiger Aspekt in der Erstellung des User-Interfaces. Der Aufbau des Regelprogramms wird in nachfolgender Abbildung dargestellt.

Abbildung 3.6: User Interface des Regelprogramms

Links ist die Eingabe der Werte zu finden, die der Bediener vorgibt. In der Mitte ist die Ausgabe der aktuellen Werte vom Verstärker und des jeweiligen Sensors der gewählten Messung (Beschleunigung, Kraft). Zwischen der Eingabe und der Ausgabe ist ein großer Stopp-Button, der beim Betätigen die aktuelle Messung beendet. Rechts sind noch einzelne externe Sensoren zuschaltbar, die an der jeweiligen Position am Anschlussblock angeschlossen sind. Die Erklärung der Handhabung der einzelnen Bestandteile wird in Kapitel 3.2.2 erklärt.
3.2.2 Wichtige Komponenten des Regelprogramms

Nachfolgend werden alle wichtigen Komponenten des Programms dargestellt und kurz deren Funktion mit Hilfe der Abbildungen erklärt.

Eingabe der Vorgabewerte

Abbildung 3.7: Eingabe der Vorgabewerte
TIRA-Verstärker

Abbildung 3.8: Ausgabe der TIRA-Versärker-Werte

Messdaten

Abbildung 3.9: Ausgabe der aktuellen Messdaten und Einstellung der Messung
Sensoren

Abbildung 3.10: Ausgabe der aktuellen Sensorsignale

Eingänge

Zurzeit ist neben der für die Regelung relevanten Eingänge ein zusätzlicher Signaleingang fix angeschlossen, wie in Abbildung 3.11 zu sehen ist.

Abbildung 3.11: Fixe und externe Ausgänge

Ausgänge

Abbildung 3.12: Ausgänge
3.2.3 Programmablauf

Fallunterscheidung Frequenz

1. Fall: „Vorgabewert“

 Hier wird der Startwert gleich der Vorgabefrequenz (SOLL) gesetzt. Jedoch wird wegen der FFT-Analyse zur Startfrequenz die Hälfte des Frequenzintervalls addiert:

\[
\text{Startwert} = \text{Vorgabefrequenz} + \frac{\Delta f}{2}
\]

(3.3)

2. Fall: „Vergleich“

 Der aktuelle Wert, von der FFT ermittelt (IST), wird mit dem Vorgabewert (SOLL) verglichen und gleichzeitig untersucht, ob sich die Differenz der beiden in dem Vorgabefrequenzfeld befindet. Ist diese innerhalb der Toleranz folgt „gleich“, außerhalb folgt „ungleich“.

3. Fall: „ungleich“

 Ist der Wert nicht im Toleranzfeld des Vorgabewertes, wird überprüft ob der aktuelle Wert (IST) „größer“ (Fall 4) oder „kleiner“ (Fall 5) als der SOLL-Wert ist.
4. **Fall: „größer“**
 Wenn der aktuelle Wert (IST) größer ist, dann wird der Wert für die Signalerzeugung verkleinert um die Differenz auszugleichen.

5. **Fall: „kleiner“**
 Wenn der aktuelle Wert (IST) kleiner ist, dann wird der Wert für die Signalerzeugung vergrößert um die Differenz auszugleichen.

Die aktualisierten Werte aus Fall 4 oder Fall 5 werden genutzt, um die Bewegung des Shakers anzupassen. Der Durchgang der Schleife ist somit abgeschlossen. Die veränderte, angepasste Bewegung des Schwingungserregers ändert die Signale der Sensoren. Der aktualisierte IST-Wert wird erneut in dem Fall „Vergleich“ mit dem SOLL-Wert verglichen. Diese Prozedur wird solange wiederholt bis der Fall „gleich“ erreicht worden ist.

6. **Fall: „gleich“**
 Ist der aktuelle Wert (IST) innerhalb des Vorgabetoleranzbereiches (SOLL), dann wird in „Messen bereit“ gewechselt.

7. **Fall: „Messen bereit“**
 Hier werden die aktuellen Messwerte (IST) für die weitere Verwendung zur Verfügung gestellt bzw. für die tatsächliche Messung bereitgehalten.

8. **Fall: „Messwerte auslesen“**
 Ist bei der Regelung der Frequenz und der Amplitude innerhalb einer Regelschleife „Messen bereit“ erreicht worden, werden die zur Verfügung gestellten Messwerte (IST) in einer Matrix abgespeichert. Die Matrix wird mit jeder Einreglung um die aktuellen Messwerte erweitert.

Fallunterscheidung Amplitude

1. **Fall: „Vorgabewert“**
 Der Startwert der Amplitude gleicht dem der Vorgabestartamplitude gleichgesetzt:
 \[
 \text{Startwert} = \text{Vorgabestartamplitude} \quad (3.4)
 \]

8. **Fall: „Messwerte auslesen“**
 Dieser Fall ist nur bei der Fallunterscheidung der Frequenz vorhanden, da die Abspeicherung der aktuellen Messwerte nur einmal notwendig ist.

Nachdem die aktuellen Messwerte in „Messwerte auslesen“ in die Matrix abgespeichert worden sind, wird die Startfrequenz um das eingegebene Frequenzintervall erhöht. Das Programm
4 Verbesserungsmöglichkeiten

4.1 Verbesserungen Hardware

Es ist ratsam den Ladungsvorverstärker direkt an das Gestell des Shakers anzubringen, damit dieser so nah wie möglich am Beschleunigungssensor ist (Abbildung 3.1). Dies kann mit einer Rohrschelle ausgeführt werden, die an das Gestell angeschraubt wird. Desweiteren muss ein kürzeres Sensorkabel besorgt werden.

4.2 Verbesserungen Software

Da das Regelungsprogramm in der LabVIEW-Programmierung durch Neuensteiger programmiert worden ist, sind einige Teilbereiche vereinfacht programmiert worden. Einzeln Programm‌bausteine können durch bessere, einfachere, elegantere oder genauere Lösungen ersetzt werden. Das Anfahren des Shakers an den Startwert kann optimiert werden und somit die erste Einregelung beschleunigt werden. Eine weitere Verbesserung ergibt sich, wenn die Funktion „write to spreadsheet“ (abspeichern der Matrix in einer csv-Datei) in der Regelungsschleife integriert wird. Ist diese außerhalb platziert kann es bei einem unkontrollierten Programmstopp (Stromausfall) zu einem Verlust der bereits erfassten Messdaten kommen. Ist die Funktion innerhalb der Schleife integriert, wird jeder neue Wert der Matrix an die beste-
Verbesserungsmöglichkeiten

hende Datei angehängt. Hierdurch wird die Wiederholung einer langwierigen Messprozedur
vermieden, da das Programm mit dem letzten abgespeicherten Wert fortgesetzt werden kann.
Die Eingabe der Vorgabewerte durch den Bediener ist ebenfalls noch einfach gehalten. Um
dem Bediener ein professionelleres Interface zu präsentieren, gibt es einige Möglichkeiten
dazu. Der Bediener kann durch die Eingabe der benötigten Werte geführt werden. So kann
zum einen ein Button „Fall wählen“ eingefügt werden. Beim Betätigen dieses Buttons er-
scheint ein Popup-Fenster in dem der benötigte Fall ausgewählt wird. Abschließend können
die Eingabewerte vom Bediener eingegeben werden. So werden eventuelle Fehler bei der Ini-
tialisierung vermieden, sodass das Programm nicht mit falschen bzw. alten Eingabewerten
arbeitet und im schlimmsten Fall die Messung unbrauchbar macht. Zusätzlich kann eine Da-
tenbank gepflegt werden, dass die Umrechnungsfaktoren der im Labor verfügbaren Sensoren
nicht manuell eingegeben werden müssen. Dies erleichtert die Bedienung.
5 Fazit

6 Anhang
I Quick Guide

Diese kurze Erklärung beschreibt in einzelnen Schritten die Inbetriebnahme des Prüfstandes.

1. Strom für den Schaltschrank anschließen
2. Schaltschrank einschalten

3. NI – Chassi im Schaltschrank einschalten (WICHTIG: V or Rechner starten)

4. Prüfstands-Rechner unter dem Tisch einschalten
 ➔ Anmeldung: PW: germany
5. Programm („Shakerregelung“) starten
6. TIRA-Verstärker einschalten
 ➔ WICHTIG: Einstellung immer laut Abbildung vornehmen
7. Programm, wie in 3.2 beschrieben, bedienen: Startbutton links oben
8. Abgespeicherte csv-Datei in Excel öffnen
 Daten ➔ Externe Daten abrufen ➔ aus Text ➔ csv-Datei auswählen ➔ Importieren
 ➔ bei „Getrennt“ den Punkt setzten ➔ Weiter ➔ Trennzeichen auswählen ➔ Weiter
 ➔ Datenformat der Spalten auf „Standard“ setzen ➔ Fertigstellen ➔ OK
II Shakeraufbau

Schwingungserreger (Shaker) S 511 40

Verstärker BA 100

Kühlungsgebläse TB 0140
Technische Dokumentation

Schwingerreger

S 51140
INHALTSVERZEICHNIS

1. **EINFÜHRUNG**
2. **TECHNISCHE DATEN TIRA vib S 51140**
 2.1. Schwingerreger
 2.2. Lüftereinheit
3. **ALLGEMEINE BESCHREIBUNG**
 3.1. Maschinelle Funktionen
 3.2. Elektrische Funktionen
4. **INSTALLATION**
5. **HINWEISE ZUR SCHWINGUNGSPRÜFUNG**
6. **SERVICE UND REPARATUR**
7. **ANLAGEN**
1. EINFÜHRUNG

Achtung!

Ohne Lüfter wird der Shaker automatisch mit reduzierter Leistung betrieben (ca. 100 N bei Betrieb mit dem Verstärker BAA 1000).
Wird der Shaker mit einem anderen Verstärker betrieben, so ist sicherzustellen, dass ohne Gebläse der Strom im System maximal 5 A betragen darf.
2. TECHNISCHE DATEN TIRAvib S 51140

Die technischen Daten wurden im Einklang mit der ISO 5344 ermittelt.

2.1. Schwingerreger

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nennkraft Sinus</td>
<td>400 N</td>
</tr>
<tr>
<td>Rauschen</td>
<td>311 N</td>
</tr>
<tr>
<td>Frequenzbereich</td>
<td>2 Hz – 6,5 kHz</td>
</tr>
<tr>
<td>Hauptresonanzfrequenz</td>
<td>> 5,5 kHz</td>
</tr>
<tr>
<td>Max. Beschleunigung Sinus</td>
<td>100 g</td>
</tr>
<tr>
<td>Rauschen</td>
<td>50 g</td>
</tr>
<tr>
<td>Masse Schwingsystem</td>
<td>0,4 kg</td>
</tr>
<tr>
<td>Max. Spannung</td>
<td>72 V_{eff}</td>
</tr>
<tr>
<td>Max. Strom</td>
<td>18 A_{eff}</td>
</tr>
<tr>
<td>Max. Leistungsaufnahme des Systems bei 230 V</td>
<td>1,22 / 1,4 kVA</td>
</tr>
<tr>
<td>(Verstärker/Lüfter)</td>
<td></td>
</tr>
<tr>
<td>Max. Geschwindigkeit</td>
<td>1,5 m/s</td>
</tr>
<tr>
<td>Max. Schwingweg p-p</td>
<td>20 mm</td>
</tr>
<tr>
<td>Max. Nutzlast (vertikal)</td>
<td>6 kg</td>
</tr>
<tr>
<td>(beeinflusst den möglichen maximalen Schwingweg)</td>
<td></td>
</tr>
<tr>
<td>Tischdurchmesser (Armatur)</td>
<td>60 mm</td>
</tr>
<tr>
<td>Magnetisches Streufeld (100 mm über der Armatur)</td>
<td>0,6 mT</td>
</tr>
<tr>
<td>Magnetisches Streufeld (100 mm neben der Armatur)</td>
<td>0,28 mT</td>
</tr>
<tr>
<td>Gewicht mit Gestell</td>
<td>18 kg</td>
</tr>
<tr>
<td>Prüflingsaufspannung</td>
<td>1 Loch in der Mitte und 4 Löcher M6 Teilkreis mit Durchmesser 40 mm</td>
</tr>
<tr>
<td>Optional</td>
<td>Stößel mit einem Durchmesser von 16 mm, 1 Gewindeeinsatz in der Mitte (M6)</td>
</tr>
<tr>
<td>Max. Nennkraft ohne Lüfter</td>
<td>100 N</td>
</tr>
</tbody>
</table>

Wichtiger Hinweis:

Wird das System mit langen Luftschläuchen betrieben (> 5 m Länge), ist die Dauer für den Volllastbetrieb eingeschränkt!
Nennkraft: 400 N max. Beschleunigung: 100 g max. Geschwindigkeit: 1,5 m/s max. Schwingweg: 20 mm
3. ALLGEMEINE BESCHREIBUNG

3.1. Maschinelle Funktionen

3.2. Elektrische Funktionen

Alle elektrischen Anschlüsse des Schwingerregers werden durch das 3-polige Verbindungskabel hergestellt.

Der Magnetfluß im Luftspalt wird durch einem Permanentmagnet erzeugt.

Wenn die Ankerwicklung des Schwingungserregers, die im rechten Winkel zum Magnetfluß im Luftspalt liegt, vom Strom durchflossen wird, resultiert eine Kraft senkrecht zum Magnetfluß und zur Ankerstromrichtung. Bei Wechselstrom entsteht also eine Wechselkraft:

\[F = B \cdot l \cdot i \]

Bedeutung:
- \(B \) - Magnetflussdichte im Luftspalt
- \(l \) - gesamte Windungslänge
- \(i \) - Strom durch die Ankerspule
4. INSTALLATION

Die Umgebungsluft am Aufstellort des Schwingungserregers sollte frei von ferromagnetischen Teilchen sein. Arbeitsgänge im Installationsbereich des Schwingregers, welche ferromagnetische Teilchen erzeugen, sollten erst nach entsprechenden Schutzmaßnahmen durchgeführt werden.

Das Schwingsystem kann senkrecht oder waagerecht betrieben werden. Es ist darauf zu achten, daß die zulässige Belastung nicht überschritten wird; insbesondere ist die Einhaltung der angegeben Werte für den zulässigen Schwingweg zu kontrollieren.

Die Umgebungstemperatur sollte im Arbeitsbereich des Schwingregers zwischen +5°C und +40°C liegen.

Zulässige Luftfeuchtigkeit im Arbeitsbereich: 0% - 95%.

5. HINWEISE ZUR SCHWINGUNGSPRÜFUNG

6. SERVICE UND REPARATUR

Der Schwingerreger S 51140 ist wartungsfreundlich konzipiert, es ist jedoch zu betonen, daß die Wartung nur den entsprechend qualifizierten Kundendiensttechnikern von TIRA anzuvertrauen ist. Regelmäßige Wartung ist an und für sich nicht notwendig, aber eine Sichtkontrolle von Zeit zu Zeit empfiehlt sich schon als vorbeugende Maßnahme.

Wenn ein Fehler auftritt, empfiehlt es sich, alle Anschlüsse am Schwingerreger auf Kurzschlüsse bzw. fehlenden Durchgang zu prüfen. Wenn der Fehler dann immer noch nicht festzustellen ist, muß der Schwingerreger zur Reparatur an TIRA eingeschickt werden.

Bei technischen Fragen oder Problemen rufen Sie unsere Service Hotline an:

+49 3 67 66 280-88

Mo-Fr 7 - 18 Uhr

Achtung!

Wird der Schwingerreger nicht mit dem passenden Verstärker von TIRA betrieben, ist darauf zu achten, dass der zulässige Strom (5 A) durch die Schwingspule nicht überschritten wird.

Anzugsmomente

Alle Anzugsmomente für Schrauben in Stahl sind folgender Tabelle zu entnehmen.

<table>
<thead>
<tr>
<th>Gewinde</th>
<th>M 3</th>
<th>M 4</th>
<th>M 5</th>
<th>M 6</th>
<th>M 8</th>
<th>M 10</th>
<th>M 12</th>
<th>M 16</th>
<th>M 20</th>
<th>M 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment</td>
<td>2.2 Nm</td>
<td>5.1 Nm</td>
<td>10.3 Nm</td>
<td>17.6 Nm</td>
<td>42.6 Nm</td>
<td>84 Nm</td>
<td>146 Nm</td>
<td>365 Nm</td>
<td>712 Nm</td>
<td>1231 Nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gewinde</th>
<th>M 3</th>
<th>M 4</th>
<th>M 5</th>
<th>M 6</th>
<th>M 8</th>
<th>M 10</th>
<th>M 12</th>
<th>M 16</th>
<th>M 20</th>
<th>M 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment</td>
<td>1.3 Nm</td>
<td>3.1 Nm</td>
<td>6.1 Nm</td>
<td>10.4 Nm</td>
<td>25.4 Nm</td>
<td>50 Nm</td>
<td>88 Nm</td>
<td>218 Nm</td>
<td>426 Nm</td>
<td>736 Nm</td>
</tr>
</tbody>
</table>

Achtung!

Die Anzugsmomente sind für Schrauben in Magnesium mit Gewindeeinsätzen mit 0,8 und für Schrauben ohne Einsätze in Aluminium oder Magnesium mit 0,4 zu multiplizieren.
7. Anlagen

- Stromlaufplan Schwingungserreger
- Belastungsdiagramm TV 51140 (S 51140 + BAA 1000)
Technische Dokumentation

Schwingreger S 51140

Stromlaufplan - Shaker
(Circuit diagram)

- Schwingspule (Armature coil)
- blower switch

without blower: 100N
with blower: 400N
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>EINFÜHRUNG</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>TECHNISCHE DATEN BAA 1000</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>ALLGEMEINE BESCHREIBUNG</td>
<td>4</td>
</tr>
<tr>
<td>3.1.</td>
<td>Frontplatte</td>
<td>4</td>
</tr>
<tr>
<td>3.1.1.</td>
<td>Multifunktionsdisplay</td>
<td>4</td>
</tr>
<tr>
<td>3.1.2.</td>
<td>Current Limit</td>
<td>5</td>
</tr>
<tr>
<td>3.1.3.</td>
<td>V/C Mode</td>
<td>5</td>
</tr>
<tr>
<td>3.1.4.</td>
<td>Phase</td>
<td>5</td>
</tr>
<tr>
<td>3.1.5.</td>
<td>Power</td>
<td>6</td>
</tr>
<tr>
<td>3.1.6.</td>
<td>Variable Gain</td>
<td>6</td>
</tr>
<tr>
<td>3.2.</td>
<td>Rückseite</td>
<td>6</td>
</tr>
<tr>
<td>3.2.1.</td>
<td>Input „AC“</td>
<td>6</td>
</tr>
<tr>
<td>3.2.2.</td>
<td>Input „DC“ (optional)</td>
<td>6</td>
</tr>
<tr>
<td>3.2.3.</td>
<td>Monitor-Ausgänge</td>
<td>7</td>
</tr>
<tr>
<td>3.2.4.</td>
<td>Output</td>
<td>7</td>
</tr>
<tr>
<td>3.2.5.</td>
<td>Main Power</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>BEDIENUNG</td>
<td>8</td>
</tr>
<tr>
<td>5.</td>
<td>KÜHLUNG</td>
<td>9</td>
</tr>
<tr>
<td>5.1.</td>
<td>Umweltbedingungen</td>
<td>9</td>
</tr>
<tr>
<td>5.2.</td>
<td>Schallpegel</td>
<td>9</td>
</tr>
<tr>
<td>6.</td>
<td>INSTALLATION</td>
<td>9</td>
</tr>
<tr>
<td>6.1.</td>
<td>Anordnung des Verstärkers</td>
<td>9</td>
</tr>
<tr>
<td>6.2.</td>
<td>Elektrische Anschlüsse</td>
<td>10</td>
</tr>
<tr>
<td>7.</td>
<td>SERVICE UND REPARATUR</td>
<td>10</td>
</tr>
<tr>
<td>8.</td>
<td>ANLAGEN</td>
<td>11</td>
</tr>
</tbody>
</table>
LEISTUNGSVERSTÄRKER DER BAUREIHE BAA 1000

1. EINFÜHRUNG

Schnell wirkende Überwachungssysteme schützen den Verstärker zuverlässig unter allen bekannten Überlastbedingungen.

Ein LC-Multifunktionsdisplay zeigt den Effektivwert des Ausgangsstromes und der Ausgangsspannung des Verstärkers an.
2. TECHNISCHE DATEN BAA 1000

Die technischen Daten wurden im Einklang mit der ISO 5344 ermittelt.

- Sinusdauerleistung: 1200 VA
- Leistungsbandbreite: 2 Hz - 20 kHz
- Optimaler Lastwiderstand: 4 Ohm (min. Last: 2 Ohm)
- Ausgangsnennspannung, max.: 72 V$_{\text{eff}}$
- Ausgangsstrom, max.: 18 A$_{\text{eff}}$
- Max. Eingangsspannung: < 5 V$_{\text{eff}}$
- Klirrfaktor: < 0,1 %
- Signal/Rauschabstand: > 90 dB
- Schutzschaltungen: Temperatur, Überstrom, Clipping

Abmessungen:
- Höhe: 190 mm
- Breite: 483 mm
- Tiefe: 600 mm
- Gewicht: 45 kg
3. ALLGEMEINE BESCHREIBUNG

3.1. Frontplatte

Die Frontplatte umfasst folgende Steuer-, Einstell- und Überwachungsfunktionen, die durch folgende Regler und Leuchtdioden dargestellt werden.

3.1.1. Multifunktionsdisplay

Auf dem Display werden bei Betrieb des Verstärkers die RMS-Werte von Strom und Spannung angezeigt.

„TEMPERATURE“ Verstärker wird aufgrund zu hoher Temperatur (Kühlkörper) abgeschaltet, LED „Temperature“ leuchtet.

„CURRENT“ Wird der eingestellte Strom am „Current-Limiter“ überschritten, schaltet der Verstärker ab und die LED „Current“ leuchtet

„STATE“ normale Betriebszustandsanzeige, kein Fehler

„VOLTAGE MODE“ LED leuchtet, wenn die Betriebsart „Spannungs-mode“ gewählt wurde.

„CURRENT MODE“ LED leuchtet, wenn die Betriebsart „Strommode“ gewählt wurde.

„INTERLOCK“ LED leuchtet, wenn bei laufendem Betrieb zwischen den beiden Betriebsarten umgeschaltet wird.
„0“ LED leuchtet, wenn Eingangs- und Ausgangsspannung die gleiche Phasenlage haben.

„180“ LED leuchtet, wenn Ein- und Ausgangsspannung eine Phasenverschiebung von 180° besitzen.

„DISTORTION“ LED leuchtet, wenn das Ausgangssignal den zulässigen Wert (Spannung) überschreitet.

„OVERTR. CONTROL“ Displaytext leuchtet auf, wenn der max. mögliche Schwingweg des Shakers überschritten wird

„AIR CONTROL“ Displaytext leuchtet auf, wenn das KühlLuftgebläse nicht arbeitet oder der Verbindungsschlauch Shaker-Lüfter nicht montiert ist.

3.1.2. Current Limit

Mit Hilfe des Potentiometers „CURRENT LIMIT“ kann der maximal zulässige Ausgangsstrom des Verstärkers begrenzt werden. (Einstellbereich zwischen 1A und 18 A)

3.1.3. V/C Mode

Der Schalter „V/C MODE“ erlaubt ein Umschalten zwischen den beiden Betriebsarten Spannungsmodus (konstante Ausgangsspannung) und Strommode (konstanter Ausgangsstrom).

Ein Wechseln der Betriebsarten darf nur bei Linksstellung des Gain-Reglers erfolgen!

Wird dies nicht beachtet, kann es zur Zerstörung des Verstärkers kommen. (LED „INTERLOCK“ leuchtet auf).

3.1.4. Phase

Der Schalter „PHASE“ erlaubt eine Änderung der Phasenlage zwischen Eingangs- und Ausgangssignal. (0°/180°)

Ein Wechseln der Phasenlage darf nur bei Linksstellung des Gain-Reglers erfolgen!
3.1.5. Power

Mit Hilfe des Schalters „POWER“ wird der Verstärker ein bzw. ausgeschaltet.

3.1.6. Variable Gain

Durch Drehen des Gain-Potentiometers nach rechts wird der Verstärker bei anliegendem Eingangssignal ausgesteuert. Das Rücksetzen einer Fehlermeldung erfolgt durch Linksdrehen des Potentiometers bis zum Anschlag.

3.2. Rückseite

3.2.1. Input „AC“

An die BNC-Buchse „AC“ erfolgt der Anschluss eines Reglers oder Sinusgenerators. Gleichspannungsanteile des Eingangssignals (Offset) werden abgeblockt.

Maximale Eingangsspannung: \(5\text{V}_{\text{eff}}\)

3.2.2. Input „DC“ (optional)

3.2.3 Monitorausgänge

An den Monitorausgängen können Strom und Spannung separat gemessen werden.

Übertragungsfaktor Strom: 0,1V/A
Übertragungsfaktor Spannung: 0,1V/V

3.2.4. Output

Die vierpolige Speakon-Buchse dient zum Anschluss des Schwingerregers an den Verstärker BAA 1000.

3.2.5. Main Power

Hier erfolgt der Netzanschluss des Verstärkers über ein dreipoliges Netzkabel mit 230V /50Hz Netzspannung.

Der Verstärker ist weiterhin für den Betrieb an folgenden Spannungen vorbereitet:

100V
120V

Auslieferungszustand: 230V
4. **BEDIENUNG**

Es ist ein externer Signalgenerator oder Regler an der „AC“-Input -Buchse auf der Rückseite des Leistungsverstärkers anzuschließen (maximale Eingangsspannung 5,0 V_{eff}). Das Amplitudenpotentiometer auf der Frontplatte des Leistungsverstärkers ist auf Linksanschlag zu stellen.

Mit Hilfe der Schalter „V/C Mode“ und „Phase“ die jeweils gewünschte Betriebsart und Phasenlage wählen.

Nach Herstellung aller notwendigen Verbindungen und Bereitstellung des Netzanschlusses am Leistungsverstärker kann die Schwingprüfanlage mittels des Netzschalters an der Frontseite des Leistungsverstärkers eingeschaltet werden. Nach ca. 5 s ist die Schwingprüfanlage betriebsbereit.

Durch Drehen des Amplitudenpotentiometers nach rechts wird die Schwingprüfanlage ausgesteuert.

Tritt ein Fehler im Verstärker oder Shaker auf, wird dies durch die entsprechende LED oder als Text im Multifunktionsdisplay signalisiert.

Das Rücksetzen einer angesprochenen Schutzfunktion (Verstärker schaltet ab) erfolgt durch Drehen des Amplitudenpotentiometers nach links bis zum Anschlag und einem erneuten Rechtsdrehen desselben.

Wichtig!
Vor dem Einschalten ist sicher zu stellen, dass das Gain-Potentiometer auf Linksanschlag steht! Andernfalls kann es zu Schäden am Schwingerreger durch den hohen Einschaltstrom kommen.
5. KÜHLUNG

Wärmeabführung durch Druckluftkühlung mit internem Gebläse. Wärmeeableiter sind durch wärmeempfindliche Schalter geschützt. Wenn der Verstärker Nennleistung an die Ohm’sche Nennbelastung anlegt, beträgt die mittlere Wärmeabstrahlenergie 30 W.

5.1. Umweltbedingungen

Umgebungstemperatur 5 bis 40°C
Luftfeuchtigkeit 0 bis 95%

5.2. Schallpegel

Bei maximaler Leistungsabgabe an eine Ohm’sche Nennbelastung liegt der in 2 m Entfernung vom Verstärker gemessene Geräuschpegel bei einer Signalfrequenz von 1000 Hz bei 47 dB(A).

6. INSTALLATION

6.1. Anordnung des Verstärkers

Bei Erhalt des Verstärkers wird der Kunde gebeten, die Geräte sofort visuell auf Transportschäden zu prüfen.

Vor Anschluss an das Stromnetz sind UNBEDINGT folgende Aufstellanweisungen in Bezug auf den Aufstellort und die Stromversorgung zu beachten.

Um zu gewährleisten, dass die Verstärkerkühlung richtig funktionieren kann, muss unbedingt ein Abstand von ca. 10 cm an Vorder- und Rückfront zu anderen Geräten vorhanden sein. Unter keinen Umständen dürfen Gegenstände den Kühlluftstrom blockieren.
6.2. Elektrische Anschlüsse

Elektrische Stromversorgung: 1,5 m Dreileiterkabel zum Anschluss an eine einphasige 50/60 Hz Stromversorgung. Strom-Nulleiter-Erde

Erforderlicher Anschluss: 230 V einphasig 50/60 Hz
Interne Eingangssicherung: 10 A
Erforderliche externe Absicherung: 16 A träge

7. SERVICE UND REPARATUR

Der BAA 1000 ist wartungsfreundlich konzipiert, es ist jedoch zu betonen, dass die Wartung nur den entsprechend qualifizierten Kundendiensttechnikern von TIRA anzuvertrauen ist. Regelmäßige Wartung ist an und für sich nicht notwendig, aber eine Sichtkontrolle von Zeit zu Zeit empfiehlt sich schon als vorbeugende Maßnahme.

Wenn ein Fehler auftritt, empfiehlt es sich, alle Anschlüsse am Verstärker auf Kurzschlüsse bzw. fehlenden Durchgang zu prüfen und alle Sicherungen zu kontrollieren. Wenn der Fehler dann immer noch nicht festzustellen ist, muss der Verstärker zur Reparatur an TIRA eingeschickt werden.

Bei technischen Fragen oder Problemen rufen Sie unsere Service Hotline an:

+49 3 67 66 280-88

Mo-Fr 7 - 18 Uhr
8. **Anlagen**

- Stromlaufplan Endstufe
TECHNISCHE PARAMETER Kühlgebläse TB 0140

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumenstrom</td>
<td>max. 140 m³/h</td>
</tr>
<tr>
<td>Gesamtdruckdifferenz</td>
<td>max. 150 mbar</td>
</tr>
<tr>
<td>Leistung</td>
<td>1,1 kW</td>
</tr>
<tr>
<td>Frequenz</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Schlauchdurchmesser</td>
<td>40 mm</td>
</tr>
<tr>
<td>Schlauchlänge (Std.)</td>
<td>3 m</td>
</tr>
<tr>
<td>Gewicht</td>
<td>16 kg</td>
</tr>
<tr>
<td>Maße (BxHxT)</td>
<td>286 x 302 x 292 mm</td>
</tr>
<tr>
<td>Schalldruckpegel</td>
<td>max. 63 dB(A)</td>
</tr>
<tr>
<td>Stromversorgung (Standard)</td>
<td>1 – / N / PE 230 V ±5% 50 Hz</td>
</tr>
<tr>
<td>SCHUKO-Stecker</td>
<td>1,4 kVA</td>
</tr>
<tr>
<td>Max. Leistungsaufnahme bei 230 V</td>
<td></td>
</tr>
</tbody>
</table>

Optional:

- **Schalldämpfer TB 0140-SI (Schallreduktion bis zu 5 dB(A))**
 - Maße (LxD): 308x82 mm
 - Gewicht: 0,2 kg

- **Schallschutzkammer TB 0140-AE (Schallreduktion 15 - 23 dB(A))**
 - Maße (BxHxT): 795x841x699 mm
 - Gewicht: 45 kg

Schlauchlänge nach Kundenwunsch (bis 10 m)
III Sensoren

Kraftsensor PCB 208 C02

Beschleunigungssensor Brüel & Kjær 4370

Verstärkungsmodul M32

Ladungsvorverstärker IEPE 100
ICP® FORCE SENSOR

<table>
<thead>
<tr>
<th>Performance</th>
<th>ENGLISH</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity(± 15 %)</td>
<td>50 mV/lb</td>
<td>11.247 mV/kN</td>
</tr>
<tr>
<td>Measurement Range(Compression)</td>
<td>100 lb</td>
<td>0.4448 kN</td>
</tr>
<tr>
<td>Measurement Range(Tension)</td>
<td>100 lb</td>
<td>0.4448 kN</td>
</tr>
<tr>
<td>Maximum Static Force(Compression)</td>
<td>600 lb</td>
<td>2.669 kN</td>
</tr>
<tr>
<td>Maximum Static Force(Tension)</td>
<td>500 lb</td>
<td>2.224 kN</td>
</tr>
<tr>
<td>Broadband Resolution(1 to 10,000 Hz)</td>
<td>0.001 lb-rms</td>
<td>0.004 N-rms</td>
</tr>
<tr>
<td>Low Frequency Response(-5 %)</td>
<td>0.001 Hz</td>
<td>0.001 Hz</td>
</tr>
<tr>
<td>Upper Frequency Limit</td>
<td>36,000 Hz</td>
<td>36,000 Hz</td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>≤ 1 % FS</td>
<td>≤ 1 % FS</td>
</tr>
</tbody>
</table>

Environmental

Temperature Range: -65 to +250 °F (-54 to +121 °C)

Temperature Coefficient of Sensitivity: ≤ 0.05 %/°F ≤ 0.09 %/°C

Electrical

Discharge Time Constant(at room temp): ≥ 500 sec ≥ 500 sec

Excitation Voltage: 20 to 30 VDC 20 to 30 VDC

Constant Current Excitation: 2 to 20 mA 2 to 20 mA

Output Impedance: ≤ 100 Ohm ≤ 100 Ohm

Output Bias Voltage: 8 to 14 VDC 8 to 14 VDC

Spectral Noise(1 Hz): 0.000135 lb/√Hz 0.000603 N/√Hz

Spectral Noise(10 Hz): 0.000276 lb/√Hz 0.00123 N/√Hz

Spectral Noise(100 Hz): 0.000096 lb/√Hz 0.0000427 N/√Hz

Spectral Noise(1000 Hz): 0.000021 lb/√Hz 0.0000095 N/√Hz

Output Polarity(Compression): Positive

Physical

Stiffness: 6 lb/µin 1.05 kN/µm

Size (Hex x Height x Sensing Surface): 0.625 in x 0.625 in x 0.500 in 15.88 mm x 15.88 mm x 12.7 mm

Weight: 0.8 oz 22.7 gm

Housing Material: Stainless Steel Stainless Steel

Sealing: Hermetic Hermetic

Electrical Connector: 10-32 Coaxial Jack 10-32 Coaxial Jack

Electrical Connection Position: Side Side

Mounting Thread: 10-32 Female Not Applicable

Mounting Torque(Recommended): 16 to 20 in-lb 181 to 226 N-cm

OPTIONAL VERSIONS

Optional versions have identical specifications and accessories as listed for the standard model except where noted below. More than one option may be used.

- **N** - Negative Output Polarity
- **W** - Water Resistant Cable

NOTES:

[2] Calculated from discharge time constant.

SUPPLIED ACCESSORIES:

Model 080A81 Thread Locker (1)
Model 081B05 Mounting Stud (10-32 to 10-32) (2)
Model 084A03 Impact Cap (1)
Model M081A62 Mounting stud, 10-32 to M6 x 1, BeCu with shoulder (2)

CE

All specifications are at room temperature unless otherwise specified.

In the interest of constant product improvement, we reserve the right to change specifications without notice.

ICP® is a registered trademark of PCB Group, Inc.
Environmental:
Humidity: Welded, Sealed
Temperature Range: 74°F to +250°F (-100°C to +482°C)
Max. Shock Acceleration: 154 dB
Typical Acceleration Sensitivity: 20 kV/m/s
Typical Magnetic Sensitivity: 50 Hz - 0.03 T

Typical Acoustic Sensitivity: 0.001 ms² at 154 dB
Typical Base Strain Sensitivity: 250 μV in base plane
Typical Temperature Transient Sensitivity:
Typical (3 Hz LFL) Sensitivity: 0.003 ms²/C

Specifications obtained in accordance with ANSI S2.11-1969

Physical:

Electrical Connector:
Coaxial 10 - 32 UNF-2A

Material: Stainless Steel, AISI 316
Piezoelectric Material: PZ203

Weight: 54 g
Construction: Delta Shear
Mounting Stud: 10 - 32 UNF x 13 mm, steel
Mounting Torque: 3.3 mN.m
Center of Gravity
Seismic Mass: 12.3 mm from mounting surface on central axis
Center of Gravity
Seismic Mass: 9.7 mm from mounting surface on central axis

Calibration Chart for Accelerometer Type 4370

Serial No. 984871

Reference Sensitivity at 50 Hz, 100 ms²:
and 2.3°C

Charge Sensitivity: 10.0 ± 0.5% of 1.00038
Voltage Sensitivity: 0.0005 ± 0.00025 mV/g
Capacitance (incl. cable): 3.5 ± 0.2 pF

Maximum Transverse Sensitivity (at 30 Hz, 100 ms²):

Typical Undamped Natural Frequency: 25 kHz

Typical Resonance Frequency, using
Calibration Exciter 4290, with accelerometer mounted
on a titanium cube by a 10 - 32 UNF-2A steel stud,
an acceleration directed from the mounting surface
into the body of the accelerometer
Resistance minimum 20,000 MΩ at room temperature
Polarity is positive on the center of the connector for
1 g = 9.807 ms² or 10 ms² = 1.02 g

Date: 5.5.92
Signature:

Pat. DK 131401

For further information see B. K. "Piezoelectric Accelerometer and Preamplifier" handbook

BC 0100
Instruction Manual

IEPE Conditioning Module M32

Application

The IEPE Conditioning Module M32 is a signal conditioner for transducers with IEPE compatible output. It provides the necessary power supply for the electronic circuit of the sensor. The unit features 3 gain ranges and a plug-in low pass filter. The M32 can be used as a front end for PC based data acquisition systems. It can be combined with the IEPE Supply Module M28. The M32 is suited for both benchtop applications and DIN rail attachment in switch cabinets. The wide supply voltage range of the M32 allows power supply from external batteries, from the available mains plug adapter or from an industrial 24 VDC supply.

What is IEPE?

IEPE is a well-established standard for the output of piezoelectric transducers and microphones. It stands for "Integrated Electronics Piezo Electric". Other brand names for the same principle are ICP®, Isotron®, Delta-tron®, Piezotron® etc. The integrated circuit of the sensor transforms the charge signal of the piezo-ceramic sensing element, with its very high impedance and high EMI sensitivity, into a voltage signal with low impedance.

A special feature of the IEPE electronics is that power supply and measuring signal are transmitted via the same cable. So, an IEPE transducer requires, like a transducer with charge output, only one single-ended shielded cable.

Figure 1 shows the principle circuit diagram. The integrated sensor electronics is supplied with constant current. This should not be confused with a 4-20 mA current loop. The constant current I_{const} is fed into the signal cable of the sensor. A de-coupling capacitor keeps DC components away from the signal conditioning circuit.

The constant current supply and de-coupling capacitor are part of the M32.

![IEPE principle and functional diagram of the M32](image-url)
By supplying the sensor with constant current a positive DC offset voltage arises at the sensor output. This DC voltage depends on the manufacturer and the specimen and reaches 5 V to 14 V. Round this bias voltage the measuring signal of the transducer may oscillate. The output voltage of the transducer never changes to negative values. Its minimum value is the saturation voltage of the integrated electronics (about 1V). The maximum value of the output voltage is limited by the supply voltage of the constant current source (24 VDC with the M32). Figure 2 shows the dynamic range of the transducer. The output of the M32 is free of DC components. It provides the unaltered AC sensor output signal.

![Dynamic range of IEPE sensors](image)

Figure 2: Dynamic range of IEPE sensors

Description

The IEPE Conditioning Module M32 (Figure 3) contains the electronic circuit for supplying one sensor. For multichannel applications additional M28 modules can be plugged into one another by means of screwed in banana plugs at the side wall of the instrument. These plugs connect the power supply voltage to all modules.

![Functions of the M32](image)

Figure 3: Functions of the M32
The M32 requires for operation a supply voltage between 5 and 26 VDC. It can be powered, for example, by:
- Industrial 24 VDC supplies
- The optionally available mains plug adapters **PS500** (for one M32) and **PS1000** (for up to 3 units M32)
- Batteries with more than 5 VDC
- PC or USB voltage (5 or 12 VDC)

The operating voltage is connected via a circular power connector to DIN 45323 on the left side of the M32. The tip (inner conductor) is the positive terminal. Alternatively the two banana sockets on the left side of the case can be used for power supply. Their polarity is shown in Figure 3. A green „Power“ LED indicates the connected supply voltage.

The M32 is protected against false polarization and line transients up to 60 V. Insulation between power supply and measuring signal is provided.

A supply voltage of 24 VDC for the constant current source is internally generated. This voltage is sufficient for an optimal dynamic range with all available IEPE compatible transducers. The constant current of the M28 is approximately 4 mA.

An LED sensor status indicator informs the user of the following conditions: (compare Figure 2):
- LED off: No sensor connected or sensor circuit interrupted.
- LED yellow: Sensor connected properly with bias voltage between 1 and 24 VDC.
- LED red: Input shorted, voltage below 1 VDC.

The gain of the M32 can be selected by a rotary switch between 1, 10 and 100.

The M32 is suited for measurements with piezoelectric transducers from 0.1 Hz to 30 kHz. Thus seismic measurements at low frequencies with accelerometers or quasi static pressure and force measurements can be performed. Also shock measurements involving high frequencies and amplitudes are possible with the M32.

The M32 has a replaceable low pass filter module type **FB2-** with 4th order Butterworth characteristics. Metra offers a variety of filter modules with cut-off frequencies between 100 Hz and 30 kHz. By unscrewing the rear panel and sliding it off the filter module becomes visible (Figure 5). Before replacing the filter, the power supply must be unplugged. Please make sure that the marking “Pin 1” is in the same position as the marking on the PCB. The frequency label supplied with the filter module can be attached to the blank field at the rear panel.

The M32 is well suited for 35 mm DIN rail attachment (Figure 4). For this purpose the adapter **M28+32DIN** is available. The adapter base is mounted on the M32 by 2 screws M2.5. Two tapped holes are provided at the rear of the instrument. As second step the DIN rail bracket is attached by one screw M3.

Figure 5: Replacing the filter module

Figure 4: DIN rail adapter M28+32DIN
Technical Data

Input / output: BNC sockets
Output circuit: DC coupled; impedance approx. 100 Ω
Dynamic range: ± 10 V
Constant current source: 3.8 .. 5.6 mA, compliance voltage >24 V
IEPE sensor indicator: Bicolor LED; off = open input; yellow = 1 .. 24 V = OK; red = shorted
Gain ranges: 1 / 10 / 100 ± 1 % typically; ± 2 % maximum
Output noise: < 1 mV rms with 30 kHz low pass
Frequency range (-3 dB): 0.1 Hz .. 30 kHz (depending on lowpass module)
Low pass filter: Plug-in module FB2-...; Butterworth; 4th order; attenuation > 70 dB/decade
available frequencies (-3 dB): FB2 - 0.1 / 0.3 / 1 / 3 / 5 / 10 / 30 kHz
Power supply: $U_S = 5 .. 26$ VDC; < 200 mA; insulated from signal path;
via DIN 45323 circular power connector (positive terminal at tip)
or two banana plugs
Case: Aluminum, connected to negative terminal of power supply
Included accessories: 2 screw-in banana plugs for power supply connection with other modules
Optional accessories: PS500: mains plug adapter for 100 .. 240 VAC; 12 VDC / 500 mA
sufficient for one unit M32
PS1000: mains plug adapter for 100 .. 240 VAC; 12 VDC / 1000 mA
sufficient for up to 3 units M32
M28+32DIN: 35 mm DIN rail adapter
Operating temperature: -10 .. 55 °C; 95 % relative humidity; no condensation
Weight: 170 g
Dimensions (W x H x D): 56 mm x 59 mm x 44 mm

Limited Warranty
Metra warrants for a period of
24 months
that its products will be free from defects in material
or workmanship and shall conform to the
specifications current at the time of shipment.

The warranty period starts with the date of invoice.
The customer must provide the dated bill of sale
as evidence.
The warranty period ends after 24 months.
Repairs do not extend the warranty period.
This limited warranty covers only defects which arise
as a result of normal use according to the
instruction manual.
Metra’s responsibility under this warranty does not apply
to any improper or inadequate maintenance or modifica-
tion and operation outside the product’s specifications.
Shipment to Metra will be paid by the customer.
The repaired or replaced product will be sent back
at Metra’s expense.

Declaration of Conformity
Product: IEPE Conditioning Module
Model: M32
It is hereby certified that the above mentioned
product complies with the demands
pursuant to the following standards:
- EN 50081-1
- EN 50082-1

Responsible for this declaration is the producer
Metra Mess- und Frequenztechnik in Radebeul e.K.
Meißner Str. 58
D-01445 Radebeul
Declared by
Michael Weber
Radebeul, 2nd of July, 1999

#184 July/08
Bedienungsanleitung
Ladungsvoerstärker
IEPE100

Verwendungszweck
Der IEPE100 ist ein Ladungsverstärker für piezoelektrische Sensoren mit Ladungsausgang. Dies können neben Beschleunigungsaufnehmern auch Kraft- oder Druckaufnehmer sein.

An seinem Ausgang stellt der IEPE100 ein IEPE-kompatibles Signal bereit.

Sensoren mit Ladungsausgang kommen in Fällen zum Einsatz, wo sie solchen mit den IEPE-Ausgang überlegen sind. Das können zum Beispiel Messungen bei hohen Temperaturen, Stoßmessungen mit sehr hoher Dynamik oder Anwendungen mit besonderen Anforderungen an geringe Baugröße und Masse sein.

Die Schaltung des IEPE100 setzt das sehr hochimpedante und störimpfindliche Ladungssignal des Piezoelements in ein Spannungssignal mit niedriger Impedanz um. Dieses lässt sich wesentlich unkomplizierter weiterleiten und verarbeiten.

Funktion

Eine Besonderheit des IEPE-Prinzips besteht darin, dass die Versorgungsenergie des Verstärkers und sein Ausgangssignal über die gleiche Leitung übertragen werden. Somit genügt eine einfache geschirmte Signalleitung, an die keine besonderen Anforderungen gestellt werden. Leitungsängen von einigen hundert Metern sind zulässig.

Die Versorgung des IEPE-Vorverstärkers erfolgt mit Konstantstrom, welcher der Messleitung aufgeprägt wird. Über dem Ausgang des IEPE100 bildet sich bei Speisung mit Konstantstrom eine positive Gleichspannung von ca. 13 V. Um diese Arbeitspunktsspannung kann das Messsignal mit einer Amplitude von ±5 V schwingen.

In Bild 1 ist \(U_S \) die Versorgungsspannung der Konstantstromquelle, welche mindestens 20 V betragen sollte. \(C_L \) ist die Kabelkapazität. Der Kondensator \(C_k \) entkoppelt den Gleichanteil des Vorverstärkerausgangs vom nachfolgenden Messgerät. Damit steht ein niederimpedantes, gleichspannungsfreies Messsignal zur Verfügung, das mit Standardmesstechnik, z.B. Analysatoren, Datenloggen oder Oszilloskopen weiterverarbeitet werden kann.

Viele Messgeräte besitzen bereits IEPE-kompatible Eingänge mit integrierter Konstantstromquelle und Koppelkondensator. Ebenso eignen sich zur Konstantstromversorgung und Signalauskopplung das Versorgungsgerät M28 oder die Messverstärker M32, M68 oder M208 von Metra (Bild 2).

Die Ausgangsspannung einer Messkette aus Beschleunigungsaufnehmer und Vorverstärker ist das Produkt aus Beschleunigung (a), Ladungsübertragungsfaktor des Aufnehmers (\(B_{qa} \)) und Übertragungsfaktor des Vorverstärkers (\(B_{uq} \)):

\[
U_a = a \cdot B_{ua} \cdot B_{uq}
\]

Einstellung der Verstärkung

Der IEPE100 verfügt über drei Verstärkungen bzw. Übertragungsfaktoren:
- Verstärkung 1: 0,1 mV/pC
- Verstärkung 2: 1 mV/pC
- Verstärkung 3: 10 mV/pC

Die Verstärkungen werden wie folgt gewählt:

<table>
<thead>
<tr>
<th>Schalter Nr.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1 mV/pC</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>1 mV/pC</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>10 mV/pC</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

Alle anderen Schaltkombinationen führen zu undefinierten Betriebszuständen.

Auf dem Gehäuseetikett können Sie die eingestellte Verstärkung mit einem wischfesten Filzstift markieren.

Hinweis: Die drei Einstellregler dienen zum Abgleich der Verstärkungen und dürfen nur im Rahmen einer Kalibrierung verstellt werden.

Anschluss

Eingang und Ausgang arbeiten massebezogen. Beide Masseanschlüsse sind über das Gehäuse verbunden.

Der Anschluss des Sensors an den Vorverstärker erfolgt über eine BNC-Buchse. Da es sich um einen empfindlichen Ladungseingang handelt, darf nur störarmes Spezialkabel eingesetzt werden. Geeignete störarme Sensorkabel von Metra sind:

<table>
<thead>
<tr>
<th>Typ</th>
<th>Sensorstecker</th>
<th>Maximaltemperatur</th>
<th>Kabeldurchmesser</th>
<th>Kabellänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>009-UNF-BNC-1,5</td>
<td>UNF10-32 (Microdot)</td>
<td>120 °C</td>
<td>2,1 mm</td>
<td>1,5 m</td>
</tr>
<tr>
<td>010-UNF-BNC-5</td>
<td>UNF10-32 (Microdot)</td>
<td>120 °C</td>
<td>2,7 mm</td>
<td>5 m</td>
</tr>
<tr>
<td>010-UNF-BNC-10</td>
<td>UNF10-32 (Microdot)</td>
<td>120 °C</td>
<td>2,7 mm</td>
<td>10 m</td>
</tr>
<tr>
<td>009-SUB-BNC-1,5</td>
<td>Subminiatur M3</td>
<td>120 °C</td>
<td>2,1 mm</td>
<td>1,5 m</td>
</tr>
<tr>
<td>010-TNC-BNC-1,5</td>
<td>TNC</td>
<td>120 °C</td>
<td>2,7 mm</td>
<td>1,5 m</td>
</tr>
</tbody>
</table>

Bei anderen Koaxialkabeln ist die Wirkung des Schirmgeflechts gegen elektromagnetische Felder oft unzureichend und bei mechanischer Beanspruchung, z.B. durch Biegebewegung, kann als Folge des sogenannten triboelektrischen Effekts ein Störsignal die Messung beeinträchtigen. Bei störarmen Kabeln wird dieser Effekt durch eine Leitplastikbeschichtung auf dem Dielektrikum minimiert.

Wichtig:
- Das Sensorkabel sollte in jedem Fall möglichst kurz gehalten werden. Längen über 10 m sind nicht zu empfehlen.
- Verschmutzungen der Ladungseingangsbuchse müssen vermieden werden.

Technische Daten

Eingang: Ladungseingang, BNC-Buchse
Ausgang: IEPE-kompatibler Spannungsausgang, BNC-Stecker
Verstärkungen: 0,1 / 1 / 10 mV/pC ± 2 %, wählbar mit DIP-Schaltern
Lebensdauer der DIP-Schalter: > 2000 Schaltvorgänge
Ausgangsspannung*: > ± 5V
Messbereiche*: ± 500 pC / ± 5000 pC / ± 50 000 pC
IEPE-Versorgung: Konstantstrom 4 bis 20 mA, Quellenvorspannung > 20 V
Änderung der Verstärkung mit dem Konstantstrom: ± 0,8 % von 4 bis 20 mA
Frequenzbereich*: 0,6 Hz bis 23 kHz (- 5 %)
 0,3 Hz bis 33 kHz (-10 %)
 0,2 Hz bis 65 kHz (-3 dB)
Ausgangsimpedanz: < 100 Ω
Rauschspannung am Ausgang*: < 50 µV; Effektivwert 0,1 Hz bis 50 kHz
Arbeitspunktsspannung: 11 bis 16 V, abhängig von Konstantstrom und Temperatur
Überspannungsfestigkeit am Eingang: 50 V Impuls
Arbeitstemperaturbereich: -40 bis 80 °C
Temperaturkoeffizient der Verstärkung: -0,02 %/K

*gemessen mit 1 nF Sensorkapazität und 1 nF Kabelkapazität bei 4 mA Konstantstrom

Garantie

Metra gewährt auf dieses Produkt eine Herstellergarantie von
24 Monaten.

Durch die Garantie wird gewährleistet, dass das Gerät frei von Fabrikations- und Materialfehlern ist, die die Funktion entsprechend der Bedienungsanleitung beeinträchtigen.

Garantieansprüche entfallen bei unsachgemäßer Behandlung, insbesondere Nichtbeachtung der Bedienungsanleitung, Betrieb außerhalb der Spezifikation und nicht autorisierte Eingriffe.

Die Kosten für die Rücksendung trägt Metra.

Konformitätserklärung

Produkt: Ladungsvorverstärker
Typ: IEPE100
Hiermit wird bestätigt, dass das oben genannte Produkt den folgenden Anforderungen entspricht:

DIN EN 61010-1: 2002 (Sicherheit)
DIN EN 61326-1: 2006 (EMV-Anforderungen)

Diese Erklärung wird verantwortlich für den Hersteller
Metra Mess- und Frequenztechnik
in Radebeul e.K.
Meißner Str. 58, D-01445 Radebeul
abgegeben durch
Michael Weber
Radebeul, 3. April 2012
IV NI-Komponenten

Connector Box SCB-68A

Steuerkarte NI-PXIe 6358

Chassi NI-PXIe 1073
Specifications

This appendix lists the SCB-68A specifications. These specifications are typical at 25 °C unless otherwise noted.

Caution Do not connect hazardous voltages (>30 Vrms/42 Vpk/60 VDC) to the SCB-68A.

Temperature Sensor
Accuracy... ±1.0 °C over a 0 to 70 °C range

Power Requirement
Power consumption (at +5 VDC, ±5%)
Typical .. 1 mA with no signal conditioning installed
Maximum.. 800 mA from host computer

Note The power specifications pertain to the power supply of the host computer when using internal power or to the external supply connected at the +5 V screw terminal when using external power. The maximum power consumption of the SCB-68A is a function of the signal conditioning components installed and any circuits constructed on the general-purpose breadboard area. If the SCB-68A is powered from the host computer, the maximum +5 V current draw, which is limited by the fuse, is 800 mA.

Fuse
Rating.. 1.10 A, 8 VDC SMT PTC
Fuse is not user-replaceable

Physical Characteristics
Dimensions (including feet) 14.7 × 14.7 × 3.0 cm (5.8 × 5.8 × 1.2 in.)
Weight.. 644 g (1 lb 7 oz)
I/O connector .. One 68-pin male SCSI connector
Screw terminals .. 68, all I/O signals are available at screw terminals
Wire gauge.. 14–30 AWG
Torque... 0.5–0.6 N·m (4.4–5.3 in.·lb)
Through hole pads 0.8 to 0.9 mm (in diameter)
Appendix A Specifications

Safety Voltages
Connect only voltages that are no greater than 30 V_{rms}/42 V_{pk}/60 V_{DC}.

Environmental
Temperature
- Operating: 0 to 70 °C
- Storage: −20 to 70 °C
Relative humidity
- Operating: 5 to 90% RH, noncondensing
- Storage: 5 to 90% RH, noncondensing
Pollution Degree: 2
Maximum altitude: 2,000 m
Indoor use only.

Safety
This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:
- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the Online Product Certification section.

Electromagnetic Compatibility
This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:
- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.
Note For EMC declarations and certifications, and additional information, refer to the Online Product Certification section.

CE Compliance €
This product meets the essential requirements of applicable European Directives as follows:
• 2006/95/EC; Low-Voltage Directive (safety)
• 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification
Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management
NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the NI and the Environment Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)
EU Customers At the end of the product life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/weee.

电子信息产品污染控制管理办法 （中国 RoHS）
中国客户 National Instruments 合并中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于 National Instruments 中国 RoHS 合规性信息，请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)
The following specifications are typical at 25 °C, unless otherwise noted. For more information about the NI 6358, refer to the X Series User Manual available at ni.com/manuals.

Analog Input

Number of channels.................................16 differential
ADC resolution..16 bits
DNL..No missing codes guaranteed
INL..Refer to the AI Absolute Accuracy section.

Sample rate
 Single channel maximum........................1.25 MS/s
 Minimum..No minimum

Timing resolution.....................................10 ns
Timing accuracy......................................50 ppm of sample rate
Input coupling..DC
Input range..±1 V, ±2 V, ±5 V, ±10 V

Maximum working voltage for all analog inputs
 Positive input (AI+)...............................±11 V for all ranges, Measurement Category I
 Negative input (AI-)..............................±11 V for all ranges, Measurement Category I

⚠️ Caution Do not use for measurements within Categories II, III, and IV.

CMRR (at 60 Hz)......................................75 dB
Bandwidth...1 MHz
THD...-80 dBFS

Input impedance
 Device on
 AI+ to AI GND...>100 GΩ in parallel with 100 pF
 AI- to AI GND ...>100 GΩ in parallel with 100 pF
 Device off
 AI+ to AI GND...2 kΩ
 AI- to AI GND ...2 kΩ

Input bias current..±10 pA

Crosstalk (at 100 kHz)
 Adjacent channels...-80 dB
 Non-adjacent channels......................................-100 dB

Input FIFO size...8,182 samples shared among channels used

Data transfers...DMA (scatter-gather), programmed I/O

Overvoltage protection for all analog input channels
 Device on...±36 V
 Device off...±15 V

Input current during overvoltage...........................±20 mA max/AI pin

conditions

Analog Triggers

Number of triggers...1

Source...AI <0..15>, APFI <0, 1>

Functions...Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase

Source level
 AI <0..15>...±Full scale
 APFI <0, 1>...±10 V

Resolution..16 bits

Modes.. Analog edge triggering, analog edge triggering with hysteresis, and analog window triggering
Bandwidth (-3 dB)
AI <0..15>..3.4 MHz
APFI <0, 1>..3.9 MHz

Accuracy..±1% of range

APFI <0, 1> characteristics
Input impedance..10 kΩ
Coupling..DC
Protection, power on...±30 V
Protection, power off...±15 V

AI Absolute Accuracy

<table>
<thead>
<tr>
<th>Nominal Range Positive Full Scale</th>
<th>Nominal Range Negative Full Scale</th>
<th>Residual Gain Error (ppm of Reading)</th>
<th>Offset Tempco (ppm of Range/°C)</th>
<th>Random Noise, σ (μVrms)</th>
<th>Absolute Accuracy at Full Scale (μV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-10</td>
<td>95</td>
<td>35</td>
<td>252</td>
<td>2,498</td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
<td>102</td>
<td>36</td>
<td>134</td>
<td>1,289</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>102</td>
<td>42</td>
<td>71</td>
<td>528</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>120</td>
<td>50</td>
<td>61</td>
<td>291</td>
</tr>
</tbody>
</table>

Note For more information about absolute accuracy at full scale, refer to the AI Absolute Accuracy Example section.

Gain tempco..8 ppm/°C
Reference tempco...5 ppm/°C
Residual offset error...15 ppm of range
INL error..46 ppm of range

Note Accuracies listed are valid for up to two years from the device external calibration.

AI Absolute Accuracy Equation

\[
\text{Absolute Accuracy} = \text{Reading} \cdot (\text{Gain Error}) + \text{Range} \cdot (\text{Offset Error}) + \text{Noise Uncertainty}
\]

\[
\text{Gain Error} = \text{Residual Gain Error} + \text{Gain Tempco} \cdot (\text{Temp Change From Last Internal Cal}) + \text{Reference Tempco} \cdot (\text{Temp Change From Last External Cal})
\]
OffsetError = ResidualOffsetError + OffsetTempco \cdot (TempChangeFromLastInternalCal) + INLError

\textit{NoiseUncertainty} = \frac{\text{Random Noise} \cdot 3}{\sqrt{10,000}} \text{ for a coverage factor of 3 } \sigma \text{ and averaging 10,000 points.}

\textbf{AI Absolute Accuracy Example}

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- \text{TempChangeFromLastExternalCal} = 10 \, ^\circ\text{C}
- \text{TempChangeFromLastInternalCal} = 1 \, ^\circ\text{C}
- \text{number of readings} = 10,000
- \text{CoverageFactor} = 3 \, \sigma

For example, on the 10 V range, the absolute accuracy at full scale is as follows:

\textit{GainError} = 95 \, \text{ppm} + 8 \, \text{ppm} \cdot 1 + 5 \, \text{ppm} \cdot 10 = 153 \, \text{ppm}

\textit{OffsetError} = 15 \, \text{ppm} + 35 \, \text{ppm} \cdot 1 + 46 \, \text{ppm} = 96 \, \text{ppm}

\textit{Noise Uncertainty} = \frac{252 \, \mu\text{V} \cdot 3}{\sqrt{10,000}} = 7.6 \, \mu\text{V}

\textit{AbsoluteAccuracy} = 10 \, \text{V} \cdot (\text{GainError}) + 10 \, \text{V} \cdot (\text{OffsetError}) + \text{NoiseUncertainty} = 2,498 \, \mu\text{V}

\textbf{Analog Output}

Number of channels...4

DAC resolution...16 bits

DNL...±1 LSB, max

Monotonicity..16 bit guaranteed

Accuracy...Refer to the \textit{AO Absolute Accuracy} section.

Maximum update rate (simultaneous)

1 channel..3.3 MS/s
2 channels..3.3 MS/s
3 channels..3.3 MS/s
4 channels..3.3 MS/s

Minimum update rate..No minimum

Timing accuracy..50 ppm of sample rate

Timing resolution...10 ns
Output range..±10 V, ±5 V, ±external reference on
APFI <0, 1>

Output coupling..DC
Output impedance...0.4 Ω
Output current drive.......................................±5 mA
Overdrive protection......................................±25 V
Overdrive current..10 mA
Power-on state..±5 mV
Power-on/off glitch..1.5 V peak for 200 ms
Output FIFO size..8,191 samples shared among channels used
Data transfers...DMA (scatter-gather), programmed I/O
AO waveform modes.................................Non-periodic waveform, periodic waveform
regeneration mode from onboard FIFO,
periodic waveform regeneration from host
buffer including dynamic update

Settling time, full-scale step..........................2 µs
15 ppm (1 LSB)
Slew rate..20 V/µs
Glitch energy at midscale transition...............6 nV · s
±10 V range

External Reference

APFI <0, 1> characteristics
 Input impedance.......................................10 kΩ
 Coupling...DC
 Protection, device on................................± 30 V
 Protection, device off.............................± 15 V
 Range..± 11 V
 Slew rate..20 V/µs
AO Absolute Accuracy

Absolute accuracy at full-scale numbers is valid immediately following self calibration and assumes the device is operating within 10 °C of the last external calibration.

Table 2. AO Absolute Accuracy

<table>
<thead>
<tr>
<th></th>
<th>Nominal Range Positive Full Scale</th>
<th>Nominal Range Negative Full Scale</th>
<th>Residual Gain Error (ppm of Reading)</th>
<th>Gain Tempco (ppm/°C)</th>
<th>Reference Tempco (ppm/°C)</th>
<th>Residual Offset Error (ppm of Range)</th>
<th>Offset Tempco (ppm of Range/ °C)</th>
<th>INL Error (ppm of Range)</th>
<th>Absolute Accuracy at Full Scale (μV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>-10</td>
<td>110</td>
<td>17</td>
<td>5</td>
<td>65</td>
<td>1</td>
<td>64</td>
<td>3,066</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-5</td>
<td>117</td>
<td>8</td>
<td>5</td>
<td>65</td>
<td>1</td>
<td>64</td>
<td>1,526</td>
</tr>
</tbody>
</table>

Note Accuracies listed are valid for up to two years from the device external calibration.

AO Absolute Accuracy Equation

\[
\text{Absolute Accuracy} = \text{Output Value} \cdot (\text{Gain Error}) + \text{Range} \cdot (\text{Offset Error})
\]

\[
\text{Gain Error} = \text{Residual Gain Error} + \text{Gain Tempco} \cdot (\text{Temp Change From Last Internal Cal}) + \text{Reference Tempco} \cdot (\text{Temp Change From Last External Cal})
\]

\[
\text{Offset Error} = \text{Residual Offset Error} + \text{Offset Tempco} \cdot (\text{Temp Change From Last Internal Cal}) + \text{INL Error}
\]
Digital I/O/PFI

Static Characteristics

Number of channels................................. 48 total, 32 (P0.<0..31>,
 16 (PFI <0..7>/P1, PFI <8..15>/P2)

Ground reference................................. D GND

Direction control.................................. Each terminal individually programmable as
 input or output

Pull-down resistor............................... 50 kΩ typical, 20 kΩ minimum

Input voltage protection........................ ±20 V on up to two pins

⚠️ Caution Stresses beyond those listed under the Input voltage protection
specification may cause permanent damage to the device.

Waveform Characteristics (Port 0 Only)

Terminals used...................................... Port 0 (P0.<0..31>)

Port/sample size.................................... Up to 32 bits

Waveform generation (DO) FIFO.............. 2,047 samples

Waveform acquisition (DI) FIFO.............. 255 samples

DI Sample Clock frequency....................... 0 to 10 MHz, system and bus activity
 dependent

DO Sample Clock frequency
 Regenerate from FIFO......................... 0 to 10 MHz
 Streaming from memory....................... 0 to 10 MHz, system and bus activity
 dependent

Data transfers..................................... DMA (scatter-gather), programmed I/O

Digital line filter settings.................... 160 ns, 10.24 μs, 5.12 ms, disable
PFI/Port 1/Port 2 Functionality

Functionality.. Static digital input, static digital output, timing input, timing output
Timing output sources.. Many AI, AO, counter, DI, DO timing signals
Debounce filter settings... 90 ns, 5.12 μs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

Recommended Operating Conditions

Input high voltage (V_{IH})
 Minimum... 2.2 V
 Maximum... 5.25 V

Input low voltage (V_{IL})
 Minimum... 0 V
 Maximum... 0.8 V

Output high current (I_{OH})
 P0.<0..7>... -24 mA maximum
 PFI <0..15>/P1/P2... -16 mA maximum

Output low current (I_{OL})
 P0.<0..7>... 24 mA maximum
 PFI <0..15>/P1/P2... 16 mA maximum

Digital I/O Characteristics

Positive-going threshold (VT+)................................. 2.2 V maximum
Negative-going threshold (VT-)............................... 0.8 V minimum
Delta VT hysteresis (VT+ - VT-)............................. 0.2 V minimum
I_{IL} input low current (V_{IN} = 0 V)......................... -10 μA maximum
I_{IH} input high current (V_{IN} = 5 V)....................... 250 μA maximum
Figure 2. $P_0.<0..31>$: I_{OH} versus V_{OH}

Figure 3. $P_0.<0..31>$: I_{OL} versus V_{OL}
Figure 4. PFI <0..15>/P1/P2: I_{OH} versus V_{OH}

![Graph showing I_{OH} versus V_{OH} for different temperatures and supply voltages.]

Figure 5. PFI <0..15>/P1/P2: I_{OL} versus V_{OL}

![Graph showing I_{OL} versus V_{OL} for different temperatures and supply voltages.]

General-Purpose Counters

Number of counter/timers: 4
Resolution: 32 bits
Counter measurements .. Edge counting, pulse, pulse width, semi-period, period, two-edge separation
Position measurements XI, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding
Output applications .. Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
Internal base clocks ... 100 MHz, 20 MHz, 100 kHz
External base clock frequency 0 MHz to 25 MHz; 0 MHz to 100 MHz on PXIe_DSTAR<A,B>
Base clock accuracy ... 50 ppm
Inputs ... Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock
Routing options for inputs Any PFI, PXIe_DSTAR<A,B>, PXI_TRIG, PXI_STAR, analog trigger, many internal triggers
FIFO ... 127 samples per counter
Data transfers ... Dedicated scatter-gather DMA controller for each counter/timer, programmed I/O

Frequency Generator

Number of channels ... 1
Base clocks ... 20 MHz, 10 MHz, 100 kHz
Divisors .. 1 to 16
Base clock accuracy .. 50 ppm
Output can be available on any PFI terminal.

Phase-Locked Loop (PLL)

Number of PLLs ... 1
Table 3. Reference Clock Locking Frequencies

<table>
<thead>
<tr>
<th>Reference Signal</th>
<th>PXI Express Locking Input Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PXIe_DSTAR<A,B></td>
<td>10, 20, 100</td>
</tr>
<tr>
<td>PXI_STAR</td>
<td>10, 20</td>
</tr>
<tr>
<td>PXIe_CLK100</td>
<td>100</td>
</tr>
<tr>
<td>PXI_TRIG <0..7></td>
<td>10, 20</td>
</tr>
<tr>
<td>PFI <0..15></td>
<td>10, 20</td>
</tr>
</tbody>
</table>

Output of PLL 100 MHz Timebase; other signals derived from 100 MHz Timebase including 20 MHz and 100 kHz Timebases

External Digital Triggers

Source.. Any PFI, PXIe_DSTAR<A,B>, PXI_TRIG, PXI_STAR

Polarity.. Software-selectable for most signals

Analog input function.......................... Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Convert Clock, Sample Clock Timebase

Analog output function.......................... Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase

Counter/timer functions.......................... Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock

Digital waveform generation (DO).............. Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase

Digital waveform acquisition (DI).............. Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase

Device-to-Device Trigger Bus

Input source... PXI_TRIG <0..7>, PXI_STAR, PXIe_DSTAR<A,B>

Output destination............................... PXI_TRIG <0..7>, PXIe_DSTARC
Output selections..10 MHz Clock, frequency generator output, many internal signals
Debounce filter settings..............................90 ns, 5.12 μs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

Bus Interface

Form factor..x1 PXI Express peripheral module, specification rev 1.0 compliant
Slot compatibility.................................x1 and x4 PXI Express or PXI Express hybrid slots
DMA channels.......................................8, can be used for analog input, analog output, digital input, digital output, counter/timer 0, counter/timer 1, counter/timer 2, counter/timer 3

All PXIe devices may be installed in PXI Express slots or PXI Express hybrid slots.

Power Requirements

⚠️ **Caution** The protection provided by the device can be impaired if the device is used in a manner not described in the *X Series User Manual*.

PXIe

+3.3 V...7.8 W
+12 V..22.2 W

Current Limits

⚠️ **Caution** Exceeding the current limits may cause unpredictable device behavior.

+5 V terminal (connector 0)......................1 A max\(^1\)
+5 V terminal (connector 1)......................1 A max\(^1\)
P0/PFI/P1/P2 and +5 V terminals..............1.8 A max combined

\(^1\) Has a self-resetting fuse that opens when current exceeds this specification.
Physical Characteristics

PXIe printed circuit board.................................Standard 3U PXI dimensions

Weight...241 g (8.5 oz)

I/O connectors..2 68-pin VHDCI

<table>
<thead>
<tr>
<th>Manufacturer, Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLEX 71430-0011</td>
<td>68-Pos Right Angle Single Stack PCB-Mount VHDCI (Receptacle)</td>
</tr>
<tr>
<td>MOLEX 74337-0016</td>
<td>68-Pos Right Angle Dual Stack PCB-Mount VHDCI (Receptacle)</td>
</tr>
<tr>
<td>MOLEX 71425-3001</td>
<td>68-Pos Offset IDC Cable Connector (Plug) (SHC68-*)</td>
</tr>
</tbody>
</table>

USB screw terminal/BNC screw.................16-24 AWG terminal wiring

Calibration

Recommended warm-up time.........................15 minutes

Calibration interval....................................2 years

Maximum Working Voltage

Maximum working voltage refers to the signal voltage plus the common-mode voltage.

Channel to earth...11 V, Measurement Category I

Caution Do not use for measurements within Categories II, III, or IV.
Shock and Vibration

Operational shock...30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC-60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)

Random vibration
 Operating...5 to 500 Hz, 0.3 g\textsubscript{rms}
 Nonoperating..5 to 500 Hz, 2.4 g\textsubscript{rms} (Tested in accordance with IEC-60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Environmental

Operating temperature..0 to 55 °C

Storage temperature...-40 to 70 °C

Operating humidity...10 to 90% RH, noncondensing

Storage humidity...5 to 95% RH, noncondensing

Pollution Degree..2

Maximum altitude..2,000 m

Indoor use only.

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

\textbf{Note} For UL and other safety certifications, refer to the product label or the \textit{Online Product Certification} section.
Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, refer to the *Online Product Certification* section.

CE Compliance

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.
For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法（中国 RoHS）

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于 National Instruments 中国 RoHS 合规性信息，请登录 ni.com/environment/rohs_china。(*For information about China RoHS compliance, go to ni.com/environment/rohs_china.*)
Specifications

Caution If the NI PXIe-1073 chassis is used in a manner inconsistent with the instructions or specifications listed by National Instruments, the protective features of the chassis may be impaired.

Note Specifications are subject to change without notice.

This appendix contains specifications for the NI PXIe-1073 chassis.

Electrical

AC Input

- **Input voltage range**: 100–240 VAC
- **Operating voltage range**: 90–264 VAC
- **Input frequency**: 50/60 Hz
- **Operating frequency range**: 47–63 Hz
- **Input current rating**: 4–2 A
- **Efficiency**: >70% at full load, normal input voltage
- **Power disconnect**: The AC power cable provides main power disconnect. The front-panel power switch controls the internal chassis power supply that provides DC power to the CompactPCI/PXI backplane.

1 The operating range is guaranteed by design.
Appendix A Specifications

DC Output

DC current capacity (I_{MP})

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Maximum Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3.3 V</td>
<td>15 A</td>
</tr>
<tr>
<td>+5 V</td>
<td>7.5 A</td>
</tr>
<tr>
<td>+5 V$_{AUX}$</td>
<td>1.0 A</td>
</tr>
<tr>
<td>+12 V</td>
<td>15 A</td>
</tr>
<tr>
<td>-12 V</td>
<td>0.75 A</td>
</tr>
</tbody>
</table>

Note: The maximum total power is 150 W. This represents 30 W per slot for each of the five slots of the chassis.

Over-current protection: All outputs protected from short circuit.

Over-voltage protection

<table>
<thead>
<tr>
<th>Over-voltage at</th>
<th>Active Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
</tr>
<tr>
<td>+3.3 V</td>
<td>3.76 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>5.74 V</td>
</tr>
<tr>
<td>+12 V</td>
<td>13.4 V</td>
</tr>
</tbody>
</table>

Chassis Cooling

Per slot cooling capacity: 38.25 W

Slot airflow direction: Bottom of module to top of module

Module cooling

System: Forced air circulation (positive pressurization) through a 126 CFM fan with High/Auto speed selector

Intake: Bottom of chassis

Exhaust: Along rear, right side, and top of chassis
Power supply cooling
System................................. Forced air circulation through integrated fan
Intake Front side of chassis
Exhaust................................. Rear side of chassis

Environmental

Maximum altitude 2,000 m (800 mbar)
(at 25 °C ambient)
Measurement Category II
Pollution Degree 2
For indoor use only.

Operating Environment

Ambient temperature range 0 to 50 °C
(Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2. Meets MIL-PRF-28800F Class 3 low temperature limit and high temperature limit.)

Relative humidity range 20 to 80%, noncondensing
(Tested in accordance with IEC-60068-2-56.)

Storage Environment

Ambient temperature range –40 to 71 °C
(Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2. Meets MIL-PRF-28800F Class 3 limits.)

Relative humidity range 10 to 95%, noncondensing
(Tested in accordance with IEC-60068-2-56.)
Appendix A Specifications

Shock and Vibration

Operational shock 30 g peak, half-sine, 11 ms pulse
(Tested in accordance with IEC-60068-2-27. Meets MIL-PRF-28800F Class 2 limits.)

Random Vibration

Operating ... 5 to 500 Hz, 0.3 g_{rms}
Nonoperating 5 to 500 Hz, 2.4 g_{rms}
(Tested in accordance with IEC-60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Acoustic Emissions

Sound Pressure Level (at Operator Position)
Tested in accordance with ISO 7779. Meets MIL-PRF-28800F requirements.

NI PXIe-1073
Auto fan (at 25 °C ambient) 43.3 dBA
High fan ... 58.3 dBA

Sound Power
Tested in accordance with ISO 7779.

NI PXIe-1073
Auto fan (at 25 °C ambient) 51.3 dBA
High fan ... 64.6 dBA

Note Specifications are subject to change without notice.
Safety

This product is designed to meet the requirements of the following standards of safety for information technology equipment:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326 (IEC 61326): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note For the standards applied to assess the EMC of this product, refer to the *Online Product Certification* section.

Note For EMC compliance, operate this device with shielded cabling.

CE Compliance

This product meets the essential requirements of applicable European Directives as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.
Environmental Management
NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the NI and the Environment Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/weee.

电子信息产品污染控制管理办法（中国 RoHS）

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于 National Instruments 中国 RoHS 合规性信息，请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Backplane
Size ...3U-sized; integrated controller and 5 peripheral slots.
Compliant with IEEE 1101.10 mechanical packaging.
PXI Express Specification compliant. Accepts both PXI Express and CompactPCI (PICMG 2.0 R3.0) 3U modules.

V(I/O)\(^1\) ..+5 V

Backplane bare-board materialUL 94 V-0 recognized

Backplane connectorsConform to IEC 917 and IEC 1076-4-101, and are UL 94 V-0 rated

\(^1\) V(I/O) is connected to the +5 V DC power plane, so the same specifications apply to V(I/O) and +5 V.
System Synchronization Clocks (PXI_CLK10, PXIe_CLK100, PXIe_SYNC100)

10 MHz System Reference Clock: PXI_CLK10

Maximum slot-to-slot skew 250 ps

Accuracy .. ±25 ppm max. (guaranteed over the operating temperature range)

Note The 10 MHz system reference clock does not require calibration.

Maximum jitter 5 ps RMS phase-jitter

(10 Hz–1 MHz range)

Duty-factor ... 45%–55%

Unloaded signal swing 3.3 V ±0.3 V

Note For other specifications refer to the PXI-1 Hardware Specification.

100 MHz System Reference Clock: PXIe_CLK100 and PXIe_SYNC100

Maximum slot-to-slot skew 100 ps

Accuracy .. ±25 ppm max. (guaranteed over the operating temperature range)

Maximum jitter 3 ps RMS phase-jitter

(10 Hz–12 kHz range)

2 ps RMS phase-jitter

(12 kHz–20 MHz range)

Duty-factor for PXIe_CLK100 45%–55%

Absolute single-ended voltage swing

(When each line in the differential pair has 50 Ω termination to 1.30 V or Thévenin equivalent) 400–1000 mV

Note For other specifications refer to the PXI-5 PXI Express Hardware Specification.

Mechanical

Overall dimensions (standard chassis)

- Height ..177 mm (6.97 in.)

Note 12.7 mm (0.50 in.) is added to height when feet are installed.

- Width ...257.1 mm (10.12 in.)
- Depth ...212.8 mm (8.38 in.)
- Weight ...5 kg (11.0 lbs)

Chassis materialsSheet Aluminum, Extruded Aluminum, Cold Rolled Steel, Nylon

Finish ..Clear Chromate Conversion Coat on Aluminum Electrodeposited Nickel Plate Plate on Cold Rolled Steel Polyester Urethane Powder Paint
Figure A-1 and Figure A-2 show the NI PXIe-1073 dimensions. The holes shown are for the installation of the optional rack-mount kits as shown in Figure A-3. Notice that the front and rear rack mounting holes (size M4) are symmetrical.

![NI PXIe-1073 Chassis Dimensions (Front and Side)](image)

Figure A-1. NI PXIe-1073 Chassis Dimensions (Front and Side)
Figure A-2. NI PXIe-1073 Chassis Dimensions (Bottom)
Figure A-3 shows the NI PXIe-1073 rack mount kit components.

Notes Refer to the *NI PXIe-1073 Rack Mount Installation Guide* included with your rack mount kit for more information on rack mounting the NI PXIe-1073 chassis.
V Struktogramme des Programms
Struktogramm der Regelung für den Shaker

1. Vorgabewerte
2. Vorgabewahl
3. Daten einlesen (Case (F, s, a))
4. Regelung
5. Interface Sensor
6. Verstärker
7. Daten einlesen
8. Ausgabe

While (Frequenz erhöhen)

File
Näher beschriebene Teilstrukturen

1. Vorgabewerte im Cluster
 - \(F_{\text{sohl}}, s_{\text{sohl}}, a_{\text{sohl}} \)
 - Toleranz: \(F, s, a \)
 - Toleranz: \(f \)
 - Startfrequenz: \(f_{\text{start}} \)
 - Endfrequenz: \(f_{\text{end}} \Delta f \)
 - Masse: \(m \)
 - Übertragungsfaktoren der Sensoren

2. ENUM Vorgabeauswahl

3. I/O TIRA_Voltage
 - I/O TIRA_Current
 - I/O a_Sensor
 - I/O F_Sensor

4. INTERFACE SENSOREN REGELUNG

5. INTERFACE VERSTÄRKER

6. Hier werden noch Anschlüsse für externe Sensoren angebracht.

Diagramm:
- UF a
- UF F
- FFT
- Frequenz
- Indicator
- Graph Indicator
- PEAK a_{\text{max}}
- Indicator
- FFT
- Peak F_{\text{max}}
- Indicator
Vorgabe F,s,a (soll)

Frequenz-tabelle f(soll)

FFT

UF a

UF F

UF ext.

F,s,a (ist)

f=konst. while

F,s,a while

case

Vergleich
großer
kleiner

messung

Frequenz-tabelle f(soll)

FFT

f (soll)

f (ist)

STOP

Shaker

Select case (1-6)

f while

- || -

10

- || -

10

max.
VI CAD - Zeichnungen
Alle nicht bemaßten Fasen 0,5x45°
Gewindestange

Alle nicht bemäẞten Fasen 0,5x45°

Gewindestift

MODEL M081A62 MOUNTING STUD
10-32 UNF-2A BY
M6 X 1.00-6g
(2 SUPPLIED)
Alle nicht bemaßten Fasen 0,5x45°
Alle nicht bemaßten Fasen 0,5x45°